Mid-Semester Presentation -Toward a Resilient U.S. Power Grid

Valentina Alzate, Ben Cillie, Caroline Reynolds, Megan Rosen, Daniel Weber

The DSN Lab made a system We're trying to break the system

Project Goal

A little more formally:

The Spire System was created to reliably control the power grid. Our goal as a team is to attack the system and find a way to break it or slow it below specified speeds.

The Spire System

The goal of Spire is to create an intrusion-tolerant reliable system to operate the power grid that is exposed to the open internet.

Network-Level Attacks

An Intrusion Tolerant Network

Conventional Infrastructure

- Overlay network built on top of existing IP infrastructure
 - Multi-homing

An Intrusion Tolerant Network

- Intrusion Tolerance
 - Fairness Principle
 - Flooding

Prime

How to Create a Reliable System?

- Problems to Solve:
 - What happens if our server goes down?
 - What happens if our server is compromised by an attacker?

The Answer: REDUNDANCY

Prime

Consensus Algorithms

- We seek 3 things:
 - 1) Termination
 - 2) Integrity
 - 3) Agreement

Fig. 3. Operation of Prime with a malicious leader that performs well enough to avoid being replaced (f = 1).

- Prime guarantees that we achieve these properties in a timely manner.
 - Older protocols did not enforce a timeliness condition

Prime

How many replicas do we need?

- Fail Stop Failure
 - A replica becomes completely unresponsive
- Handling Fail Stop Failure: $N \ge 2f + 1$

- Byzantine Failure
 - A replica responds in any unexpected way
 - Harder to account for in a system
- Handling Fail Stop Failure: $N \ge 3f + 1$

TL;DR - The Spire System

- Spines creates an intrusion-tolerant reliable network that isn't vulnerable to conventional network attacks (DOS, MITM, BGP Hijacking)
- Prime ensures that our distributed system maintains correctness while executing commands in a timely manner.

Testing and Benchmarking

- Testing from the Prime perspective
- We measure **latency:** the time it takes for some data to get to its destination across the network
- Modified Prime Client Program
 - Records timestamp, latency values
 - Exports data into CSV
- Cases we benchmarked:
 - Pure: SPIRE, Prime
 - Failstop: SPIRE, Prime
 - Byzantine: Prime
 - Byzantine + Failstop: Prime

Baseline (SPIRE)

Min Latency: 15.90915000000002 Max Latency: 33.81385 Average Latency: 20.05959839357429

Failstop (SPIRE)

Min Latency: 18.5282 Max Latency: 33.6891333333333 Average Latency: 20.89085140562251

Baseline (Prime)

Min Latency: 14.43215 Max Latency: 33.8841833333333 Average Latency: 19.94734605087014

Avg Latency vs. # of Clients

Failstop (Prime)

Min Latency: 18.58140000000002 Max Latency: 33.6866 Average Latency: 21.105781124498005

1 Client

No Sequence Update Attack

Average Latency: 20.857466453674135

Improper Sequence Update Attack

Average Latency: 21.1036558908046

Infinite Pre-order Messages

Average Latency: 22.062072710103894

Spam Pre-Order Messages

100 / message

Average Latency: 22.062072710103894

Average Latency: 20.24648035190615

Prime Client Resource Consumption

Baseline

Red = 50 Clients

Prime Client Resource Consumption + Failstop

Future Plans

- External: DOS, replay,
- Uses internal information about ports with external attack
- Combined external and internal attacks
- Consensus attack -> this requires > f
 - Attacks validity rather than liveness
- Mitigation Techniques:
 - Admission Control

Extra Slides: ...

IP Network Problems

- IP Networks are vulnerable to DOS attacks
- IP Networks are **efficient**, but based on **trust**
 - Thus vulnerable to impersonation
- IP Networks are scalable
- IP Networks do not guarantee reliability
- IP Networks are not intrusion-tolerant
 - How do you handle a compromised node?

Proxies

How do we interface with insecure hardware?

- Most electrical control hardware is antiquated
 - Traffic is not encrypted
 - Relies on air gaps for security
- We interface with the control hardware through a general computer known as a proxy. The proxy air gap the insecure hardware from the open internet and encrypts all traffic.
- A general purpose computer also allows us to standardize communication protocols.

Overall System Considerations

